An Approximate Derivation for Stereoscopic Vectorcardiograins with the Equilateral Tetrahedron
نویسنده
چکیده
I N THE study of spatial vectorcardiography in this laboratory it has been the practice to construct wire models of the spatial vectorcardiogram from its frontal and sagittal projections which are presented on two cathode-ray tubes.'' 2 These three-dimensional models seemed necessary to facilitate visualization of the spatial characteristics of the vectorcardiogram, but their construction entailed considerable time and care. To avoid the necessity of constructing such models, we have recently developed a simple electrode arrangement which permits satisfactory stereoscopic views of the spatial vectorcardiogram to be photographed directly from two cathode-ray tubes. One plane is rotated by approximately three degrees with respect to the frontal plane by displacement of its right apex backward. The other plane is rotated through an equal angle by displacement of its left apex backward. In the arrangement devised each cathoderay tube presents the projection of the vectorcardiogram onto a plane displaced slightly from the frontal plane. Since the electrical derivation of these planes involves the application of only four electrodes, right arm (RA), left arm (LA), left leg (F), and back (B), which form the apices of the equilateral tetrahedron, this
منابع مشابه
An approximate model for slug flow heat transfer in channels of arbitrary cross section
In this paper, a novel approximate solution to determine the Nusselt number for thermally developed, slug (low-prandtl), laminar, single phase flow in channels of arbitrary cross section is presented. Using the Saint-Venant principle in torsion of beams, it is shown that the thermally developed Nusselt number for low-prandtl flow is only a function of the geometrical parameters of the channel c...
متن کاملDecoration of the Truncated Tetrahedron - An Archimedean Polyhedron - To Produce a New Class of Convex Equilateral Polyhedra with Tetrahedral Symmetry
The Goldberg construction of symmetric cages involves pasting a patch cut out of a regular tiling onto the faces of a Platonic host polyhedron, resulting in a cage with the same symmetry as the host. For example, cutting equilateral triangular patches from a 6.6.6 tiling of hexagons and pasting them onto the full triangular faces of an icosahedron produces icosahedral fullerene cages. Here we s...
متن کاملModule approximate amenability of Banach algebras
In the present paper, the concepts of module (uniform) approximate amenability and contractibility of Banach algebras that are modules over another Banach algebra, are introduced. The general theory is developed and some hereditary properties are given. In analogy with the Banach algebraic approximate amenability, it is shown that module approximate amenability and contractibility are the same ...
متن کاملOn the stability of generalized derivations on Banach algebras
We investigate the stability of generalizedderivations on Banach algebras with a bounded central approximateidentity. We show that every approximate generalized derivation inthe sense of Rassias, is an exact generalized derivation. Also thestability problem of generalized derivations on the faithful Banachalgebras is investigated.
متن کاملA Parametrization of Equilateral Triangles Having Integer Coordinates
We study the existence of equilateral triangles of given side lengths and with integer coordinates in dimension three. We show that such a triangle exists if and only if their side lengths are of the form √ 2(m2 − mn + n2) for some integers m, n. We also show a similar characterization for the sides of a regular tetrahedron in Z: such a tetrahedron exists if and only if the sides are of the for...
متن کامل